Semi-Supervised Classification for Extracting Protein Interaction Sentences using Dependency Parsing

نویسندگان

  • Günes Erkan
  • Arzucan Özgür
  • Dragomir R. Radev
چکیده

We introduce a relation extraction method to identify the sentences in biomedical text that indicate an interaction among the protein names mentioned. Our approach is based on the analysis of the paths between two protein names in the dependency parse trees of the sentences. Given two dependency trees, we define two separate similarity functions (kernels) based on cosine similarity and edit distance among the paths between the protein names. Using these similarity functions, we investigate the performances of two classes of learning algorithms, Support Vector Machines and k-nearest-neighbor, and the semisupervised counterparts of these algorithms, transductive SVMs and harmonic functions, respectively. Significant improvement over the previous results in the literature is reported as well as a new benchmark dataset is introduced. Semi-supervised algorithms perform better than their supervised version by a wide margin especially when the amount of labeled data is limited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Interacting Protein Pairs and Evidence Sentences by using Dependency Parsing and Machine Learning Techniques

The biomedical literature is growing rapidly. This increases the need for developing text mining techniques to automatically extract biologically important information such as protein-protein interactions from free texts. Besides identifying an interaction and the interacting pair of proteins, it is also important to extract from the full text the most relevant sentences describing that interac...

متن کامل

Parsing Natural Language Sentences by Semi-supervised Methods

We present our work on semi-supervised parsing of natural language sentences, focusing on multi-source crosslingual transfer of delexicalized dependency parsers. We first evaluate the influence of treebank annotation styles on parsing performance, focusing on adposition attachment style. Then, we present KLcpos3 , an empirical language similarity measure, designed and tuned for source parser we...

متن کامل

Working with a small dataset - semi-supervised dependency parsing for Irish

We present a number of semi-supervised parsing experiments on the Irish language carried out using a small seed set of manually parsed trees and a larger, yet still relatively small, set of unlabelled sentences. We take two popular dependency parsers – one graph-based and one transition-based – and compare results for both. Results show that using semisupervised learning in the form of self-tra...

متن کامل

Semi-Supervised Convolution Graph Kernels for Relation Extraction

Extracting semantic relations between entities is an important step towards automatic text understanding. In this paper, we propose a novel Semi-supervised Convolution Graph Kernel (SCGK) method for semantic Relation Extraction (RE) from natural English text. By encoding sentences as dependency graphs of words, SCGK computes kernels (similarities) between sentences using a convolution strategy,...

متن کامل

Fourth Workshop on Statistical Parsing of Morphologically Rich Languages

We present a number of semi-supervised parsing experiments on the Irish language carried out using a small seed set of manually parsed trees and a larger, yet still relatively small, set of unlabelled sentences. We take two popular dependency parsers – one graph-based and one transition-based – and compare results for both. Results show that using semisupervised learning in the form of self-tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007